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Chapter 1

Introduction

In most stochastic modeling of random phenomena one assumes that the future state

depends only on the present state and not on the past history, and furthermore, that the

influence of the present state is instantaneous. However, for some systems this assump-

tion doesn’t hold true. In order to describe the behavior of such systems, stochastic

models with delay have been used. The advantage of explicitly incorporating time de-

lays in modeling is to recognize the reality of non-instantaneous interactions. Delayed

stochastic models appear in various applications in engineering where the dynamics are

subject to propagation delay. For instance, in financial models where the past history

of a stock price has an effect in the determination of the fair price of a call option, in

marketing models where there is a time lag between advertising expenditures and the

corresponding effect on the goodwill level.

In this thesis we are interested in the study of forward and backward delayed stochas-

tic differential equations with constraints on the state. In this framework we consider

the stochastic delayed differential equation of multivalued type, also called stochas-

tic delayed variational inequality (where the solution is forced, due to the presence of

term ∂ϕ (X(t)), to remain into the convex set Dom (ϕ) ). Still in the framework of

delayed stochastic differential equations with state constraints, we are also interested

in a new type of multivalued backward stochastic differential equation (BSDE) with

time-delayed generator.

Beside the problem of existence and uniqueness of a solution of the forward and

backward multivalued stochastic differential equation with time delay, we study the

stochastic control problem. We first show that the value function satisfies the dynamic
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1. INTRODUCTION

programming principle, then it is proved that the value function is a viscosity solution of

a proper Hamilton-Jacobi-Bellman equation. We also derive the Pontryagin maximum

principle; in this regard we start by the derivation of the variation equation, then we

introduce the maximum principle for near-optimal controls and finally, we give the

necessary conditions of optimality.

This thesis is organized as follow :

In Chapter 2, we recall some important results of nonlinear analysis and stochastic

analysis.

In Chapter 3, we study the following multivalued stochastic differential equation

with delay (also called the stochastic delay variational inequality) :
dX(t) + ∂ϕ (X(t)) dt 3 b (t,X(t),Θ(t),Π(t)) dt

+ σ (t,X(t),Θ(t),Π(t)) dW (t), t ∈ (0, T ],

X(t) = ξ (t) , t ∈ [−δ, 0] ,

(1.1)

where δ ≥ 0 is the fixed delay, ξ ∈ C
(

[−δ, 0] ; Dom (ϕ)
)
, b and σ are given functions,

ϕ is a convex lower semicontinuous function with ∂ϕ its subdifferential, and Π, Θ are

defined as follow

Π(t) := X(t− δ), Θ(t) :=

∫ 0

−δ
eλrX(t+ r)dr = e−λt

∫ t

t−δ
eλsX(s) ds) (1.2)

In the first part of the chapter we provide the assumptions and some a priori estimates

of the solution are also given. The last part concerns the existence and uniqueness

theorem. The proof is based on the penalization method, by approximating ϕ by its

Moreau-Yosida regularization.

In Chapter 4, we consider the following multivalued backward stochastic differential

equation with time-delayed generator :
− dY (t) + ∂ϕ (Y (t)) dt 3 F (t, Y (t) , Z (t) , Yt, Zt) dt

+ Z (t) dW (t) , 0 ≤ t ≤ T,

Y (T ) = ξ .

(1.3)

We mention that in (1.3) the generator F at the moment t ∈ [0, T ] depends on the

past values (Yt, Zt) on [0, t] of the solution (Y (t) , Z (t)), where

Yt := (Y (t+ θ))θ∈[−T,0] and Zt := (Z(t+ θ))θ∈[−T,0] . (1.4)
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We set the assumptions and the definition of the solution for such BSDE. Also we

prove the existence and uniqueness of the solution using the penalization method.

In Chapter 5, the stochastic optimal control problem is investigated. The first part

of the chapter is devoted to the dynamic programming principle. The problem is to

minimize the cost functional

J(s, ξ;u) = E
[ ∫ T

s
f (t,X(t),Θ(t), u(t)) dt+ h (X(T ),Θ(T ))

]
(1.5)

over a class of control strategies denoted by U [s, T ] (here f and h are only continuous

and with polynomial growth), subject to the following equation
dX(t) + ∂ϕ (X(t)) dt 3 b (t,X(t),Θ(t),Π(t), u(t)) dt

+ σ (t,X(t),Θ(t),Π(t), u(t)) dW (t), t ∈ (s, T ],

X(t) = ξ (t− s) , t ∈ [s− δ, s] ,

(1.6)

We define the value function

V (s, ξ) = infu∈U[s,T ] J(s, ξ;u), (s, ξ) ∈ [0, T )× C
(

[−δ, 0] ; Dom (ϕ)
)

V (T, ξ) = h(X(0), X̄λ,δ(0)), ξ ∈ C
(

[−δ, 0] ; Dom (ϕ)
) (1.7)

Our aim is to prove that V satisfies the dynamic programming principle and is a vis-

cosity solution of a proper Hamilton-Jacobi-Bellman equation.

In the second part, we establish necessary conditions for the optimal control u∗ mini-

mizing the cost functional

J(u) := E
[ ∫ T

0
g(t, R(X)(t), u(t))dt+ h(X(T ))

]
(1.8)

subject to the one-dimensional stochastic variational inequality (SVI) with delay
dX(t) + ∂ϕ(X(t))dt 3 b(t, R(X)(t), u(t))dt

+ σ(t, R(X)(t), u(t))dW (t), t ∈ [0, T ];

X(t) = η(t), t ∈ [−δ, 0].

(1.9)

where ∂ϕ is the subdifferential of a lower semi-continuous (l.s.c.) convex function ϕ

and

R(X)(t) :=

∫ 0

−δ
X(t+ r) dα(r), t ∈ [0, T ]

is a delay term applied to the dynamics of the system. In order to reach this goal we

will employ one of the essential approaches in solving optimal control problems, the

maximum principle.
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Chapter 2

Preliminaries

2.1 Elements of nonlinear analysis

We begin by recalling definitions and properties of maximal monotone operators. Then

we remind bounded variation functions, mentioning that the space of such functions is

a Banach space and is the dual of the space of continuous functions. Finally, we come

to proper convex lower semicontinuous functions, the subdifferential of such functions

are maximal monotone operators.

2.2 Elements of stochastic analysis

We start with the classical stochastic calculus : Brownian motion, stochastic integral

and stochastic differential equations. Then we recall some existence and uniqueness

results for stochastic delayed differential equations and backward stochastic differential

equations with time delayed generators. Finally we bring back to mind equations of

multivalued types, by giving existence and uniqueness results for multivalued stochastic

differential equations and multivalued backward stochastic differential equations.
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Chapter 3

Multivalued stochastic

differential equations with delay

In this chapter1 the equation envisaged is:


dX(t) + ∂ϕ (X(t)) dt 3 b (t,X(t),Θ(t),Π(t)) dt

+ σ (t,X(t),Θ(t),Π(t)) dW (t), t ∈ (0, T ],

X(t) = ξ (t) , t ∈ [s− δ, s] ,

(3.1)

where

Π(t) := X(t− δ), Θ(t) :=

∫ 0

−δ
eλrX(t+ r)dr = e−λt

∫ t

t−δ
eλsX(s) ds (3.2)

with δ ≥ 0 is a fixed delay, λ ∈ R and ξ ∈ C
(

[−δ, 0] ; Dom (ϕ)
)

is arbitrary fixed.

We recall that the existence problem for stochastic equation (3.1) without the multi-

valued term ∂ϕ has been treated by Mohammed in (18) (see also (17)). On the other

hand, the variational inequality without delay has been considered by Bensoussan &

Răşcanu in (3) (for the first time) and Asiminoaei & Răşcanu in (1) (where the existence

is proved through a penalized method). After that the results have been extended by

Răşcanu in (21) (the Hilbert space framework) and Cépa in (6) (the finite dimensional

case) by considering a maximal monotone operator A instead of ∂ϕ.

1The results of this chapter are part of a joint paper (9) submitted for publication
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3. MULTIVALUED STOCHASTIC DIFFERENTIAL EQUATIONS
WITH DELAY

3.1 Assumptions

Let s ∈ [0, T ) be arbitrary but fixed and (Ω,F, {Fst }t≥s,P) be a stochastic basis. The

process {W (t)}t≥s is a d-dimensional standard Brownian motion with respect to this

basis.

We will need the following assumptions:

(H1) The function ϕ : Rd → (−∞,+∞] is convex and lower semicontinuous (l.s.c.)

such that

Int (Dom (ϕ)) 6= ∅,

and we suppose that

0 ∈ Int (Dom (ϕ)) and ϕ(x) ≥ ϕ (0) = 0, ∀x ∈ Rd;

Remark 3.1.1. We choose a specific ϕ, the indicator function of a non-empty closed

convex subset D̄ of Rd, ID̄ : Rd → (−∞,+∞]. In this case, the supplementary drift

∂ID̄(X (t)) is an “inward push” that forbids the process X (t) to leave the domain D̄

and this drift acts only when X (t) reach the boundary of D̄.

(H2) The functions b : [0, T ] × R3d → Rd and σ : [0, T ] × R3d → Rd×d are continuous

and there exist `, κ > 0 such that for all t ∈ [0, T ] and x, y, z, x′, y′, z′ ∈ Rd,

|b (t, x, y, z)− b(t, x′, y′, z′)| ≤ ` (|x− x′|+ |y − y′|+ |z − z′|) ,

|σ (t, x, y, z)− σ(t, x′, y′, z′)| ≤ ` (|x− x′|+ |y − y′|+ |z − z′|) ,

|b (t, 0, 0, 0)|+ |σ (t, 0, 0, 0)| ≤ κ.

(3.3)

(H3) The initial path ξ is Fss-measurable and

ξ ∈ L2
(
Ω;C

(
[−δ, 0] ; Dom (ϕ)

))
and ϕ (ξ (0)) ∈ L1 (Ω;R) . (3.4)

Definition 3.1.1. A pair of progressively measurable continuous stochastic processes
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3.2 A priori estimates

(X,K) : Ω× [s− δ, T ]→ R2d is a solution of (3.1) if

(i) X ∈ L2
F
(
Ω;C

(
[s− δ, T ] ;Rd

))
,

(ii) X (t) ∈ Dom (ϕ), a.e. t ∈ [s− δ, T ] , P-a.s.

and ϕ (X) ∈ L1 (Ω× [s− δ, T ] ;R) ,

(iii) K ∈ L2
F
(
Ω;C

(
[s, T ] ;Rd

))
∩ L1

(
Ω; BV

(
[s, T ] ;Rd

))
with K (s) = 0, P-a.s.,

(iv) X (t) +K (t) = X (s) +

∫ t

s
b (r,X (r) ,Θ(r),Π(r)) dr

+

∫ t

s
σ (r,X (r) ,Θ(r),Π(r)) dW (r) , ∀t ∈ (s, T ], P-a.s.

(v) X (t) = ξ (t− s) , ∀t ∈ [s− δ, s]

(vi)

∫ t̂

t
〈u−X (r) , dK (r)〉+

∫ t̂

t
ϕ(X (r))dr ≤ (t̂− t)ϕ(u),

∀u ∈ Rd, ∀ 0 ≤ t ≤ t̂ ≤ T, P-a.s.

(3.5)

3.2 A priori estimates

In all that follows, C denotes a constant, which may depend only on `, κ, δ and T ,

which may vary from line to line.

The next result provides some a priori estimates of the solution. Write ‖ξ‖[−δ,0], for

‖ξ‖C([−δ,0];Rd).

Proposition 3.2.1. We suppose that assumptions (H1−H3) are satisfied. Let (X,K)

be a solution of equation (3.1). Then there exists a constant C = C (`, κ, δ, T ) > 0 such

that

E sup
r∈[s,T ]

|X (r)|2 ≤ C
(
1 + E ‖ξ‖2[−δ,0]

)
.

In addition

E sup
r∈[s,T ]

|Θ(r)|2 + E
∫ t

s
|Π(r)|2 dr ≤ C

(
1 + E ‖ξ‖2[−δ,0]

)
.

Proposition 3.2.2. We suppose that assumptions (H1−H3) are satisfied. If
(
Xs,ξ,Ks,ξ

)
and (Xs′,ξ′ ,Ks′,ξ′) are the solutions of (3.1) corresponding to the initial data (s, ξ) and

7



3. MULTIVALUED STOCHASTIC DIFFERENTIAL EQUATIONS
WITH DELAY

(s′, ξ′) respectively, then there exists C = C (`, κ, δ, T ) > 0 such that

E supr∈[s∧s′,t] |Xs,ξ (r)−Xs′,ξ′ (r) |2 + E supr∈[s∧s′,t] |Ks,ξ (r)−Ks′,ξ′ (r) |2

≤ C
[
Γ1 + |s− s′|

(
1 + E ‖ξ‖2[−δ,0] + E||ξ′||2[−δ,0]

)]
,

(3.6)

where

Γ1 := E||ξ − ξ′||2[−δ,0] + E
∫ s′

s′−δ

∣∣ξ′ (r − s)− ξ′ (r − s′)∣∣2 dr. (3.7)

3.3 Existence and uniqueness

We state now the main result of this section:

Theorem 3.3.1. Under assumptions (H1 − H3) equation (3.1) has a unique solution.

Moreover, there exists a constant C = C (`, κ, δ, T ) > 0 such that

E sup
r∈[s,T ]

|X (r)|2 + E sup
r∈[s,T ]

|K (r)|2 + E ‖K‖BV([−δ,T ];Rd) + E
∫ T

s
ϕ (X (r)) dr

≤ C
(
1 + E ‖ξ‖2[−δ,0]

)
and

E sup
r∈[s,T ]

|X (r)|4 + E ‖K‖2
BV([−δ,T ];Rd) + E

(∫ T

s
ϕ (X (r)) dr

)2
≤ C

(
1 + E ‖ξ‖4[−δ,0]

)
.

Remark 3.3.1. The existence of a solution for (3.1) will be shown using the penalized

method. More precisely we consider ϕε the Moreau-Yosida regularization of ϕ. The

penalized equation is given by:
dXε (t) +∇ϕε (Xε (t)) dt = b (t,Xε (t) ,Θε (t) ,Πε (t)) dt

+ σ (t,Xε (t) ,Θε (t) ,Πε (t)) dW (t), t ∈ (0, T ],

Xε (t) = ξ (t) , t ∈ [−δ, 0] ,

where

Θε(t) :=

∫ 0

−δ
eλrXε(t+ r)dr, Πε(t) := Xε(t− δ).
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Chapter 4

Multivalued BSDEs with

time-delayed generator

The aim of this chapter1 is to prove the existence and uniqueness of a solution (Y (t) , Z (t))t∈[0,T ]

for the following multivalued BSDE with time delay generator (formally written as):
−dY (t) + ∂ϕ (Y (t)) dt 3 F (t, Y (t) , Z (t) , Yt, Zt) dt

+Z (t) dW (t) , 0 ≤ t ≤ T,

Y (T ) = ξ .

(4.1)

where the generator F at time t ∈ [0, T ] depends on the past values of the solution

through Yt and Zt defined by

Yt := (Y (t+ θ))θ∈[−T,0] and Zt := (Z(t+ θ))θ∈[−T,0] . (4.2)

We mention that we will take Z(t) = 0 and Y (t) = Y (0) for any t < 0.

Delong and Imkeller were the first who introduced and studied in (7) the BSDE

with time-delayed generator by considering the equation

Y (t) = ξ +

∫ T

t
F (s, Ys, Zs)ds−

∫ T

t
Z(s)dW (s), 0 ≤ t ≤ T. (4.3)

The mentioned authors have obtained in (7) the existence and uniqueness of the solu-

tion for (4.3) if the time horizon T or the Lipschitz constant for the generator F are

sufficiently small. Concerning the multivalued term we precise that BSDE involving a

1The results of this chapter are part of a joint paper (8) submitted for publication
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4. MULTIVALUED BSDES WITH TIME-DELAYED GENERATOR

subdifferential operator (which are also called backward stochastic variational inequal-

ities, BSVI) has been treated by Pardoux and Răşcanu in (20) where they prove the

existence and the uniqueness for the equation

Y (t) +

∫ T

t
K (s) ds = ξ +

∫ T

t
F (s, Y (s), Z(s))ds−

∫ T

t
Z(s)dW (s), (4.4)

where K (t) is an element from ∂ϕ (Y (t)), and they generalized the Feymann-Kac type

formula in order to represent the solution of a multivalued parabolic partial differential

equation (PDE). We should mention that the solution Y is reflected at the boundary of

the domain of ∂ϕ and the role of the process K is to push Y in order to keep it in this

domain. There is a recent paper (16) where it is studied, in the infinite dimensional

framework, a generalized version of (4.4) considered on a random time interval (and

their applications to the stochastic PDE).

4.1 Assumptions

Let (Ω,F,P,F) be a stochastic basis, T ∈ (0,∞) be a finite time horizon, {W (t)}t∈[0,T ]

be a d′-dimensional standard Brownian motion with respect to the stochastic basis and

F = {FWt }t∈[0,T ]. .

The following assumptions will be needed:

(H4) The function F : Ω× [−T, T ]×Rd×Rd×d′×C([−T, 0];Rd)×L2([−T, 0];Rd×d′)→
Rd satisfies that there exist L, L̄ > 0 such that, for some probability measure α

on B ([−T, 0]) and for any t ∈ [0, T ], (y, z) , (ȳ, z̄) ∈ Rd × Rd×d′ , (yt, zt) , (ȳt, z̄t) ∈
C([−T, 0];Rd)× L2([−T, 0];Rd×d′) , P-a.s.

(i) F (·, ·, y, z, y·, z·) is Ft-progressively measurable;

(ii) |F (t, y, z, yt, zt)− F (t, ȳ, z̄, yt, zt)| ≤ L(|y − ȳ|+ |z − z̄|);

(iii) |F (t, y, z, yt, zt)− F (t, y, z, ȳt, z̄t)|2 ≤ L̄
∫ 0

−T
|y(t+ θ)− ȳ(t+ θ)|2 α(dθ)

+L̄

∫ 0

−T
|z(t+ θ)− z̄(t+ θ)|2 α(dθ) ;

and

(iv) E
[ ∫ T

0
|F (t, 0, 0, 0, 0)|2 dt

]
<∞ ;

(v) F (t, ·, ·, ·, ·) = 0, ∀t < 0 .
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4.1 Assumptions

(H5) The function ϕ : Rd → (−∞,+∞] is proper convex and l.s.c., and we assume

ϕ(y) ≥ ϕ(0) = 0,∀ y ∈ Rd.

(H6) The terminal data ξ : Ω→ Rd is a FT -measurable random variable such that

E[|ξ|2 + |ϕ(ξ)|] <∞.

Let H2
T (Rd×d′) denote the space of p.m.s.p. Z : Ω× [0, T ]→ Rd×d′ satisfying

E
∫ T

0
|Z(t)|2 dt <∞.

Let S2
T (Rd) denote the space of F-adapted and continuous processes Y : Ω× [0, T ]→ Rd

satisfying

E sup
t∈[0,T ]

|Y (t)|2 <∞.

Definition 4.1.1. The triple (Y,Z,K) is a solution of time-delayed multivalued BSDE

(4.1) if

(i) (Y,Z,K) ∈ S2
T (Rd)×H2

T (Rd×d′)×H2
T (Rd) ,

(ii) E
[ ∫ T

0
ϕ (Y (t)) dt

]
<∞,

(iii) (Y (t) ,K(t)) ∈ ∂ϕ, P (dω)⊗ dt, a.e. on Ω× [0, T ],

(iv) Y (t) +

∫ T

t
K(s)ds = ξ +

∫ T

t
F (s, Y (s), Z(s), Ys, Zs)ds

−
∫ T
t Z(s)dW (s), ∀t ∈ [0, T ], a.s.

(4.5)

Remark 4.1.1. It is easy to show that if (Y,Z) ∈ S2
T (Rd) × H2

T (Rd×d′) then the gen-

erator is well defined and P-integrable, since the following inequality holds true:∫ T

0
|F (s, Y (s), Z(s), Ys, Zs)|2 ds ≤ 3

(
L2 + L̄

)
T sup
t∈[0,T ]

|Y (s)|2 + 3
(
L2 + L̄

) ∫ T

0
|Z(s)|2 ds

+3

∫ T

0
|F (s, 0, 0, 0, 0)|2 ds.

(4.6)
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4. MULTIVALUED BSDES WITH TIME-DELAYED GENERATOR

4.2 Existence and uniqueness

Throughout this section C will be a constant (possibly depending on L) which may

vary from line to line.

In order to obtain the uniqueness of the solution we will prove the next a priori

estimates.

Proposition 4.2.1. Let assumptions (H4−H6) be satisfied. Let (Y, Z,K) , (Ȳ , Z̄, K̄) ∈
S2
T (Rd) × H2

T (Rd×d′) × H2
T (Rd) be the solutions of (4.1) corresponding to (ξ, F ) and(

ξ̄, F̄
)

respectively. If the time horizon T or Lipschitz constant L̄ are small enough

then there exists some constants C1 = C1 (L) > 0 and C2 = C2 (L) > 0, independent of

L̄ and T , such that

||Y − Ȳ ||2S2T (Rd)
+ ||Z − Z̄||2H2

T (Rd×d′ ) ≤ C1e
C2TE

[
|ξ − ξ̄|2

+E
∫ T

0

∣∣F (s, Y (s), Z(s), Ys, Zs)− F̄ (s, Ȳ (s), Z̄(s), Ȳs, Z̄s)
∣∣2 ds].

The main result of this section is given by

Theorem 4.2.1. Let assumptions (H4−H6) be satisfied. If time horizon T or Lipschitz

constant L̄ are small enough, then there exists a unique solution (Y, Z,K) of (4.1).

Remark 4.2.1. In order to prove the existence of the solution we consider the approx-

imating BSDE with time delayed generator:

Y ε (t) +

∫ T

t
∇ϕε (Y ε (s)) ds

= ξ +

∫ T

t
F (s, Y ε (s) , Zε (s) , Y ε

s , Z
ε
s) ds−

∫ T

t
Zε (s) dW (s) ,

0 ≤ t ≤ T, P-a.s.
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Chapter 5

Stochastic optimal control

5.1 Dynamic programming principle

The aim of this section1 is to prove that the value function satisfies the dynamic

programming principle and is a viscosity solution of a partial differential equation of

Hamilton-Jacobi-Bellman (HJB) type.

Let’s recall that stochastic optimal control associated to a system with delay is very

difficult to treat, since the space of initial data is infinite dimensional. Nonetheless it

happens that choosing a specific structure of the dependence of the past and under

certain conditions, the control problem for systems with delay can be reduced to a fi-

nite dimensional problem. In the case of ϕ being zero, we refer to the paper of Larssen

(13) where it is shown, under Lipschitz assumptions of the coefficients f and h, that

the value function satisfies the dynamic programming principle. This work allowed

Larssen & Risebro in (14) to prove, in the frame of delay systems and under some

supplementary assumptions on V , that the value function is a viscosity solution for a

Hamilton-Jacobi-Bellman equation.

5.1.1 Problem formulation

Let (s, ξ) ∈ [0, T ) × C
(

[−δ, 0] ; Dom (ϕ)
)

be arbitrary but fixed, U ⊂ Rd be a given

compact set of admissible control values and u : Ω× [s, T ]→ U be the control process.

We define the class U [s, T ] of admissible control strategies as the set of five-tuples

1The results of this section are part of a joint paper (9) submitted for publication
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5. STOCHASTIC OPTIMAL CONTROL

(Ω,F,P,W, u) such that: (Ω,F, {Fst }t≥s,P) is a stochastic basis; {W (t)}t≥s is a d′-

dimensional standard Brownian motion with W (s) = 0 and F = {Fst }t≥s is generated

by the Brownian motion augmented by the P-null set in F; the control process u :

Ω× [s, T ]→ U is an F-adapted process satisfying

E
[ ∫ T

s
|f (t,X(t),Θ(t), u(t))| dt+ |h (X(T ),Θ(T ))|

]
<∞.

We consider the following stochastic controlled system
dX(t) + ∂ϕ (X(t)) dt 3 b (t,X(t),Θ(t),Π(t), u(t)) dt

+ σ (t,X(t),Θ(t),Π(t), u(t)) dW (t), t ∈ (s, T ],

X(t) = ξ (t− s) , t ∈ [s− δ, s] ,

(5.1)

where

Θ(t) :=

∫ 0

−δ
eλrX(t+ r)dr, Π(t) := X(t− δ), (5.2)

together with the cost functional

J(s, ξ;u) = E
[ ∫ T

s
f
(
t,Xs,ξ,u(t),Θs,ξ,u(t), u(t)

)
dt+ h

(
Xs,ξ,u(T ),Θs,ξ,u(T )

) ]
. (5.3)

We define the associated value function:

V (s, ξ) = inf
u∈U[s,T ]

J (s, ξ;u) , (s, ξ) ∈ [0, T )× C
(

[−δ, 0] ; Dom (ϕ)
)
. (5.4)

As it can be seen in the previous section, the following three assumptions will be needed

to ensure the existence of a solution Xs,ξ,u for (5.1):

(H7) The function ϕ : Rd → (−∞,+∞] is convex and l.s.c. such that Int (Dom (ϕ)) 6= ∅
and ϕ(x) ≥ ϕ (0) = 0, ∀x ∈ Rd.

(H8) The initial path ξ is Fss-measurable such that

ξ ∈ L2
(
Ω;C

(
[−δ, 0] ; Dom (ϕ)

))
, and ϕ (ξ (0)) ∈ L1(Ω;Rd).

(H9) The functions b : [0, T ] × R3d × U → Rd and σ : [0, T ] × R3d × U → Rd×d′

are continuous and there exist `, κ > 0 such that for all t ∈ [0, T ], u ∈ U and

x, y, z, x′, y′, z′ ∈ Rd,

|b (t, x, y, z, u)− b (t, x′, y′, z′, u)|+ |σ (t, x, y, z, u)− σ (t, x′, y′, z′, u)|

≤ ` (|x− x′|+ |y − y′|+ |z − z′|) ,

|b (t, 0, 0, 0, u)|+ |σ (t, 0, 0, 0, u)| ≤ κ.

(5.5)

14



5.1 Dynamic programming principle

Theorem 5.1.1. Under assumptions (H7−H9), for any (s, ξ) ∈ [0, T )×C
(

[−δ, 0] ; Dom (ϕ)
)

and u ∈ U [s, T ] there exists a unique pair of processes (X,K) =
(
Xs,ξ,u,Ks,ξ,u

)
which is

the solution of the stochastic variational inequality with delay (5.1). In addition, for any

q ≥ 1, there exist some constants C = C (`, κ, γ, T, q) > 0 and C ′ = C ′ (`, κ, γ, T, q) > 0

such that, for any (s, ξ), (s′, ξ′) ∈ [0, T )× C
(

[−δ, 0] ; Dom (ϕ)
)
,

E sup
r∈[s,T ]

∣∣∣Xs,ξ,u (r)
∣∣∣2q + E sup

r∈[s,T ]

∣∣∣Ks,ξ,u (r)
∣∣∣2q + E

∥∥∥Ks,ξ,u
∥∥∥q

BV([−δ,T ])

+E
(∫ T

s
ϕ
(
Xs,ξ,u (r)

)
dr
)q
≤ C

[
1 + ‖ξ‖2q[−δ,0]

] (5.6)

and

E supr∈[s∧s′,t] |Xs,ξ (r)−Xs′,ξ′ (r) |2 + E supr∈[s∧s′,t] |Ks,ξ (r)−Ks′,ξ′ (r) |2

≤ C ′
[
Γ1 + |s− s′|

(
1 + ‖ξ‖2[−δ,0] + ||ξ′||2[−δ,0]

)]
,

(5.7)

where

Γ1 = ||ξ − ξ′||2[−δ,0] +

∫ s′

s′−δ

∣∣ξ′ (r − s)− ξ′ (r − s′)∣∣2 dr (5.8)

(as in (3.7)).

Remark 5.1.1. Using the above estimations and definition (5.2), it is easy to deduce

that

E sup
r∈[s,T ]

|Θs,ξ,u (r) |2q ≤ C
[
1 + ‖ξ‖2q[−δ,0]

]
(5.9)

and

E sup
r∈[s∧s′,t]

|Θs,ξ (r)−Θs′,ξ′ (r) |2 ≤ C ′
[
Γ1 +

∣∣s− s′∣∣ (1 + ‖ξ‖2[−δ,0] + ||ξ′||2[−δ,0]

)]
. (5.10)

5.1.2 Properties of the value function

Under the next assumption the cost functional and the value function will be well-

defined.

(H10) The functions f : [0, T ] × R2d × U → R, h : R2d → R are continuous and there

exists κ̄ > 0 and p ≥ 1 such that for all t ∈ [0, T ], u ∈ U and x, y ∈ Rd,

|f (t, x, y, u)|+ |h (x, y)| ≤ κ̄ (1 + |x|p + |y|p) .

In the sequel we will follow the techniques from (22) in order to give some basic

properties of the value function (including the continuity).
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5. STOCHASTIC OPTIMAL CONTROL

Proposition 5.1.1. Let assumptions (H7 − H10) be satisfied. Then there exist C > 0

such that

|V (s, ξ) | ≤ C
[
1 + ‖ξ‖p[−δ,0]

]
, ∀ (s, ξ) ∈ [0, T ]× C

(
[−δ, 0] ; Dom (ϕ)

)
(5.11)

and

|V (s, ξ)− V (s′, ξ′)| ≤ C µf,h (γ,M) + C
[
1 + ‖ξ‖p[−δ,0] +

∥∥ξ′∥∥p
[−δ,0]

]
·[

Γ
1/2
1 + |s− s′|1/2

(
1 + ‖ξ‖[−δ,0] + ||ξ′||[−δ,0]

)
γ

+
1 + ‖ξ‖[−δ,0] + ‖ξ′‖[−δ,0]

M

]
,

∀ (s, ξ) , (s′, ξ′) ∈ [0, T ]× C
(

[−δ, 0] ; Dom (ϕ)
)
,

(5.12)

where µf,h (γ,M) is the modulus of continuity of f and h,

µf,h (γ,M) := sup
|x|+|x′|+|y|+|y′|≤M
|x−x′|+|y−y′|≤γ

(t,u)∈[0,T ]×U

{
|f(t, x, y, u)− f(t, x′, y′, u)|+ |h(x, y)− h(x′, y′)|

}
,

for γ,M > 0.

Definition 5.1.1. We say that the value function satisfies the dynamic programming

principle (DPP for short) if, for every (s, ξ) ∈ [0, T ) × C
(

[−δ, 0] ; Dom (ϕ)
)
, it holds

that

V (s, ξ) = inf
u∈U[s,T ]

E
[ ∫ θ

s
f
(
t,Xs,ξ,u(t),Θs,ξ,u(t), u(t)

)
dt+ V

(
θ,Xs,ξ,u (θ)

) ]
, (5.13)

for every stopping time θ ∈ [s, T ] .

In order to show that V satisfies the DPP, we consider, for ε > 0, the penalized

equation:
dXε (t) +∇ϕε (Xε (t)) dt = b (t,Xε (t) ,Θε (t) ,Πε (t) , u (t)) dt

+σ (t,Xε (t) ,Θε (t) , Zε (t) , u (t)) dW (t), t ∈ (s, T ],

Xε (t) = ξ (t− s) , t ∈ [s− δ, s] ,
(5.14)

where

Θε(t) :=

∫ 0

−δ
eλrXε(t+ r)dr, Πε(t) := Xε(t− δ) (5.15)

16



5.1 Dynamic programming principle

and we take the associated penalized value function

Vε (s, ξ) = infu∈U[s,T ] E
[ ∫ T

s
f(t,Xs,ξ,u

ε (t),Θs,ξ,u
ε (t), u(t)) dt+ h(Xs,ξ,u

ε (T ),Θs,ξ,u
ε (T ))

]
,

(s, ξ) ∈ [0, T )× C
(

[−δ, 0] ; Dom (ϕ)
)
.

(5.16)

Remark 5.1.2. Inequalities (5.11) and (5.12) hold true for the penalized value function

Vε.

The following result is a straightforward generalization of Theorem 4.2 from (13) to

the case where f and h satisfy only sublinear growth and continuity (instead of lipschitz

continuity):

Lemma 5.1.1. Let assumptions (H7 − H10) be satisfied. If Xs,ξ,u
ε is the solution of

(5.14), then, for every (s, ξ) ∈ [0, T )× C
(

[−δ, 0] ; Dom (ϕ)
)
, it holds that

Vε (s, ξ) = inf
u∈U[s,T ]

E
[ ∫ τ

s
f(r,Xs,ξ,u

ε (r),Θs,ξ,u
ε (r), u(r))dr + Vε(τ,X

s,ξ,u
ε (τ))

]
, (5.17)

for every stopping time τ ∈ [s, T ] .

Proof. Since the equation (5.14) has Lipschitz coefficients, we can use the proof of

Theorem 4.2 in (13) also replacing the inequality from Lemma 4.1 by (5.12).

Proposition 5.1.2. Let assumptions (H7 −H10) be satisfied. Then there exists C > 0

such that

|Vε (s, ξ)− V (s, ξ)| ≤C µf,h (γ,M) + C
(
1 + ‖ξ‖p[−δ,0]

)
·

(1 + ϕ1/4 (ξ (0)) + ‖ξ‖[−δ,0])

[
ε1/16

γ
+

1

M

]
,

∀ (s, ξ) ∈ [0, T ]× C
(

[−δ, 0] ; Dom (ϕ)
)
.

(5.18)

Using, mainly inequalities (5.12) and (5.18) we can prove that

Lemma 5.1.2. Function Vε is uniformly convergent on compacts to the value function

V on [0, T ]× C
(

[−δ, 0] ; Dom (ϕ)
)
.

The main result of this section is the following:

Proposition 5.1.3. Under the assumptions (H7 − H10) the value function V satisfies

the DPP.
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5. STOCHASTIC OPTIMAL CONTROL

5.1.3 Hamilton-Jacobi-Bellman Equation. Viscosity solution

Since V is defined on [0, T ] × C
(

[−δ, 0] ; Dom (ϕ)
)
, the associated Hamilton-Jacobi-

Bellman equation will be an infinite dimensional PDE. In general the value function

V (s, ξ) depend on the initial path in a complicated way. In order to simplify the

problem, our conjecture will be that the value function V depends on ξ only through

(x, y) where

x = x (ξ) := ξ (0) and y = y (ξ) :=

∫ 0

−δ
eλrξ (r) dr.

Hence the problem can be reduced to a finite dimensional optimal control problem by

working with a new value function Ṽ given by

Ṽ : [0, T ]× R2d → R, Ṽ (s, x, y) := V (s, ξ) .

Our aim is to prove that the value function Ṽ is a viscosity solution of the following

Hamilton-Jacobi-Bellman type PDE

−∂Ṽ
∂s

(s, x, y) + sup
u∈U

H
(
s, x, y, z, u,−DxṼ (s, x, y) ,−D2

xxṼ (s, x, y)
)

−〈x− e−λδz − λy,DyṼ (s, x, y)〉 ∈ 〈−DxṼ (s, x, y) , ∂ϕ (x)〉,

for (s, x, y, z) ∈ (0, T )×Dom (ϕ)× R2d,

Ṽ (T, x, y) = h (x, y) for (x, y) ∈ Dom (ϕ)× Rd,

(5.19)

where H : [0, T ]× R3d ×U× Rd × Rd×d → R is defined by

H (s, x, y, z, u, q, p) := 〈b (s, x, y, z, u) , q〉+
1

2
Tr (σσ∗) (s, x, y, z, u) p− f (s, x, y, u) .

Let us define, for x ∈ Dom (ϕ) and z ∈ Rd,

∂ϕ∗(x; z) = lim inf
(x′,z′)→(x,z)
x∗∈∂ϕ(x′)

〈
x∗, z′

〉
and ∂ϕ∗(x; z) = lim sup

(x′,z′)→(x,z)
x∗∈∂ϕ(x′)

〈
x∗, z′

〉
. (5.20)

Remark 5.1.3. Obviously, ∂ϕ∗(x; z) = −∂ϕ∗(x;−z).

The following technical result can be found in (22):

Lemma 5.1.3. (i) For any x ∈ Int (Dom (ϕ)) and z ∈ Rd

∂ϕ∗(x; z) = inf
x∗∈∂ϕ(x)

〈x∗, z〉 (5.21)
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5.1 Dynamic programming principle

(ii) For any x ∈ Bd (Dom (ϕ)) and z ∈ Rd such that

inf
n∈N(x)

〈n, z〉 > 0

equality (5.21) still holds

(here N(x) denotes the exterior normal cone, in a point x which belongs to the boundary

of the domain).

It is easy to see that in the particular case of ϕ being the indicator function of a

closed convex set K (i.e. ϕ (x) = 0, if x ∈ K and ϕ (x) = +∞ if x /∈ K), we obtain the

form:

∂ϕ∗(x; z) =

{
0, if x ∈ Int (Dom (ϕ)) or if x ∈ Bd (Dom (ϕ)) with infn∈N(x) 〈n, z〉 > 0,

−∞, if infn∈N(x) 〈n, z〉 ≤ 0.

We define the viscosity solution for HJB equation (5.19):

Definition 5.1.2. Let v : (0, T ] × Dom (ϕ) × Rd → R be a continuous function which

satisfies v(T, x, y) = h (x) , ∀ (x, y) ∈ Dom (ϕ)× Rd.

(a) We say that v is a viscosity subsolution of (5.19) if in any point (s, x, y) ∈ (0, T ]×
Dom (ϕ)×Rd which is a maximum point for v−Ψ, for any Ψ ∈ C1,2,1((0, T )×Dom (ϕ)×
Rd;R), the following inequality is satisfied:

−∂Ψ

∂t
(s, x, y) + supu∈U H

(
s, x, y, z, u,−DxΨ (s, x, y) ,−D2

xxΨ (s, x, y)
)

−
〈
x− e−λδz − λy,DyΨ (s, x, y)

〉
≤ ∂ϕ∗(x;−DxΨ(t, x, y)) .

(b) We say that v is a viscosity supersolution of (5.19) if in any point (s, x, y) ∈ (0, T ]×
Dom (ϕ)×Rd which is a minimum point for v−Ψ, for any Ψ ∈ C1,2,1((0, T )×Dom (ϕ)×
Rd;R), the following inequality is satisfied:

−∂Ψ

∂t
(s, x, y) + supu∈U H (s, x, y, z, u,−DxΨ (s, x, y) ,−DxxΨ (s, x, y))

−
〈
x− e−λδz − λy,DyΨ (s, x, y)

〉
≥ ∂ϕ∗(x;−DxΨ(t, x, y)) .

(c) We say that v is a viscosity solution of (5.19) if it is both a viscosity sub- and

super-solution.

Theorem 5.1.2. Under assumptions (H7 − H10) the value function Ṽ is a viscosity

solution of (5.19).
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5. STOCHASTIC OPTIMAL CONTROL

5.2 Necessary conditions of optimality

In this section1 we will use the maximum principle approach. It has been introduced by

Pontryagin and his group in the 1950’s to establish necessary conditions of optimality

for deterministic controlled systems. Since then, the number of papers on the subject

sharply increased and a lot of work has been done on different type of systems. One

major difficulty that arises in the extension to the stochastic controlled systems is that

the adjoint equation becomes an SDE with terminal conditions, called backward SDEs

(BSDEs). Pioneering work in this direction was achieved by Kushner (12), Bismut (4)

or Haussman (11). Concerning the control of stochastic delayed differential equations,

Oksendal & Sulem & Zhang in (19) established sufficient and necessary stochastic

maximum principle, where the associated adjoint equation is a time-advanced backward

stochastic differential equation. In the other hand, Barbu (2) initiated systematic

studies on controlled variational inequalities in the deterministic case. On stochastic

control of stochastic variational inequality, results have been obtained in the following

directions: the study of associated Hamilton-Jacobi-Bellman equation ((9), (22)) and

necessary conditions of optimality (23).

5.2.1 Statement of the problem

We fix the delay constant δ > 0, the time horizon T > 0 and a vector of d finite positive

finite scalar measures on B([−δ, 0]), α = (α1, . . . , αd). The space of controls is a convex

closed set U ⊆ Rl. For the sake of simplicity, we will suppose that U is also bounded;

this is not really a restriction, since usually one needs compactness in order to obtain

the existence of an optimal control.

For −δ ≤ s ≤ t ≤ T , we denote by D[s, t] the space of càdlàg functions on [s, t]; the

sup-norm on D[s, t] is denoted ‖·‖s,t (or ‖·‖t, if s = −δ).
Let (Ω,F,P,F) be a stochastic basis, W a one-dimensional standard Brownian mo-

tion and F := {FWt }t≥0 the filtration generated by W augmented by the null-sets of F.

We prolong the filtration {Ft}t≥0 on [−δ, 0) by setting Ft := F0 for t ∈ [−δ, 0) (and we

still denote by F the filtration {Ft}t≥−δ).
Sometimes it is interesting to restrict the information available to the controller and

consider a subfiltration of F, G := {Gt}t≥0, instead of F.

1The results of this section are part of a joint paper (10) submitted for publication
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We introduce the following spaces:

• LpF(Ω;C[−δ, T ])), 1 ≤ p ≤ +∞, the linear space of continuous, p-integrable pro-

cesses on [−δ, T ] which are F-adapted;

• LpF(Ω;BV [−δ, T ])), 1 ≤ p ≤ +∞, the linear space of bounded variation, p-

integrable processes on [−δ, T ] which are F-adapted;

• L2
G(Ω × [0, T ] ;U), the linear space of square integrable U -valued processes on

[0, T ] which are progressively measurable with respect to G.

We consider the following SVI with delay
dX(t) + ∂ϕ(X(t))dt 3 b(t, R(X)(t), u(t))dt

+ σ(t, R(X)(t), u(t))dW (t), t ∈ [0, T ],

X(t) = ξ(t), t ∈ [−δ, 0],

(5.22)

where:

• u is an admissible control, i.e. u is an U -valued, progressively measurable process

with respect to G;

• R is the delay term defined by R(x)(t) :=

∫ 0

−δ
x(t+ r)dα(r) for x ∈ C[−δ, T ] and

t ∈ [0, T ];

• the measurable functions b : [0, T ]×Rd×U → R, σ : [0, T ]×Rd×U → R are the

coefficients of the equation;

• ϕ : R→ (−∞,+∞] is a l.s.c. convex function with int Domϕ 6= ∅;

• ξ represents the starting deterministic process, satisfying the following condition:

(H11) ξ ∈ C[−δ, 0] and ξ(0) ∈ Domϕ.

We mention that coefficients depending also on the present state of the solution

X(t) can be envisaged by replacing α with α′ := (α, δ0), where δ0 is the Dirac measure

on [−δ, 0] concentrated in 0.

Definition 5.2.1. A pair of continuous F-adapted processes (X,K) is called a solution

of (5.22) if the following hold P-a.s.:
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5. STOCHASTIC OPTIMAL CONTROL

(i) ||K||BV [0,T ] <∞; K(t) = 0, ∀t ∈ [−δ, 0];

(ii) X(t) = ξ(t), ∀t ∈ [−δ, 0];

(iii) X(t)+K(t) = ξ(0)+

∫ t

0
b(s,R(X)(s), u(s))ds+

∫ t

0
σ(s,R(X)(s), u(s))dW (s), ∀ t ∈

[0, T ];

(iv)

∫ T

0
(y(r)−X(r))dK(r) +

∫ T

0
ϕ(X(r))dr ≤

∫ T

0
ϕ(y(r))dr, ∀y ∈ C[0, T ].

In order to have existence and uniqueness of strong solutions for equation (5.22),

we impose the following conditions on the coefficients:

(H12) there exists a constant L > 0 such that for every t ∈ [0, T ], x, x̃ ∈ C([−δ, T ]) and

u ∈ U :

(i) |b(t, R(x)(t), u)− b(t, R(x̃)(t), ũ)| ≤ L||x− x̃||t;

(ii) |σ(t, R(x)(t), u)− σ(t, R(x̃)(t), ũ)| ≤ L||x− x̃||t.

Theorem 5.2.1. Let p > 1. Under assumptions (H11) and (H12), for each control u,

equation (5.22) has a unique solution (Xu,Ku) ∈ LpF(Ω;C[−δ, T ]))×
(
LpF(Ω;C[−δ, T ]))∩

L
p/2
F (Ω;BV [−δ, T ]))

)
.

Proof. The proof follows the same steps as that of Theorem 3.3.1.

In order to have continuous dependence on controls, we impose the supplementary

Lipschitz condition:

(H13) there exists a constant L̃ > 0 such that for every t ∈ [0, T ], x ∈ C([−δ, T ]) and

u, v ∈ U :

(i) |b(t, R(x)(t), u)− b(t, R(x)(t), v)| ≤ L̃ |u− v|;

(ii) |σ(t, R(x)(t), u)− σ(t, R(x)(t), v)| ≤ L̃ |u− v|.

Proposition 5.2.1. Under assumptions (H11)-(H13), there exists a constant C > 0

such that

E ‖Xu −Xv‖2T + E ‖Ku −Kv‖2T + E ‖Ku −Kv‖BV [0,T ] ≤ CE
∫ T

0
|u(t)− v(t)|2 dt,

for all controls u, v ∈ L2
G(Ω× [0, T ] ;U).
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The purpose of this section is to give necessary conditions of optimality under the

form of a maximum principle for the optimal control.

From now on we assume that Domϕ = R. Let us define the second order derivative

of ϕ as the unique σ-finite positive measure µ on B(R) such that

µ([a, a′]) = ϕ′+(a′)− ϕ′−(a), if a ≤ a′,

where ϕ′−(x) and ϕ′+(x) are the left-hand side, respectively the right-hand side deriva-

tives of ϕ in x.

(H14) b, g, σ and h are C1 in (y, u) ∈ Rd × U with uniformly bounded derivatives.

By Theorem 5.2.1, for every control u we have, under conditions (H11) and (H14), the

existence of a unique solution (Xu(t),Ku(t))t∈[0,T ] ∈ L2
F(Ω;C[0, T ])× (L2

F(Ω;C[0, T ])∩
L1
F(Ω;BV [0, T ])) for equation (5.22).

(H15) σ(t, y, u) 6= 0, ∀(t, y, u) ∈ [0, T ]× Rd × U .

From now on, (H11), (H14) and (H15) are the standing assumptions.

For an admissible control u we introduce the local time of the process Xu by

La,u(t) := |Xu(t)− a| − |Xu(0)− a| −
∫ t

0
sgn(Xu(s)− a)dXu(s).

We always can (and will) choose a version which is measurable in (a, t, ω) ∈ R ×
[0, T ] × Ω, continuous and increasing in t ≥ 0, càdlàg in a ∈ R. We recall here some

properties of the local time:

Proposition 5.2.2. Let u be an admissible control. Then:

1. for every bounded, Borel function γ,∫
R
La,u(t)γ(a)da =

∫ t

0
γ(Xu(s)) |σ(s,R(Xu)(s), u(s))|2 ds, t ∈ [0, T ] ;

2. for every t ∈ [0, T ] and a ∈ R,

(Xu(t)− a)+ − (Xu(0)− a)+ =

∫ t

0
1{Xu(s)>a}dX

u(s) +
1

2
La,u(t);
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5. STOCHASTIC OPTIMAL CONTROL

3. for every t ∈ [0, T ] and a ∈ R,

La,u(t)− La−,u(t) = 2

∫ t

0
1{Xu(s)=a} [b(s,R(Xu)(s), u(s))ds− dKu(s)] .

Formulas 1. and 2. are called occupation time density formula, respectively Tanaka

formula.

A consequence of (H15) is the absolute continuity of the bounded variation process

Ku. Indeed, the formula of time occupation density gives us∫ T

0
1{Xu(t)=x}|σ(t, R(Xu)(t), u(t))|2dt =

∫
R

1{a=x}L
a,u(t)da = 0 a.s.,

which yields ∫ T

0
1{Xu(t)=x}dt = 0 a.s., ∀x ∈ Domϕ.

Let us set Λ :=
{
x ∈ Domϕ | ϕ′+(x) > ϕ′−(x)

}
. Since Λ is at most countable, we obtain∫ T

0 1{Xu(t)∈Λ}dt = 0 a.s. By the inequalities

∫ t

0
ϕ′−(Xu(s))ds ≤ Ku(t) ≤

∫ t

0
ϕ′+(Xu(s))ds a.s.,

we obtain equality in this relation; therefore Ku is absolutely continuous. From Propo-

sition 5.2.2-3., this property implies the continuity of L·,u(t).

Now, if we had ϕ of class C2, then by occupation time density formula we would

have had ∫ t

0
ϕ′′(Xu(s))ds =

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)(s), u(s))|2
ϕ′′(a)da

=

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)(s), u(s))|2
µ(da).

This serves as a motivation for introducing the increasing process:

Au(t) :=

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)(s), u(s))|2
µ(da), t ∈ [0, T ].

Since La,u(t) = 0 if ‖Xu‖t ≤ |a|, it follows that Au is also finite and continuous.
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5.2.2 Variation equation

Let ϕε be the Moreau-Yosida regularization of ϕ. We recall that it is a C1-function ap-

proximating ϕ. By a mollification procedure, we introduce the increasing C∞-functions

βε : R→ R, ε > 0, such that β′ε, β
′′
ε are bounded and

∣∣βε(x)− ϕ′ε(x)
∣∣ < ε, ∀x ∈ R. (5.23)

Moreover, if ϕ is affine outside a compact interval, then (βε)ε∈(0,1] is uniformly bounded

and there exists another compact interval I such that β′ε(x) ≤ ε, x ∈ Ic.

For the moment, let us fix two controls u0 and u1; let us set, for θ ∈ (0, 1),

uθ(t) := u0(t) + θ(u1(t)− u0(t)), t ∈ [0, T ].

In order to simplify the notations, we write Xθ, Kθ, La,θ, Aθ instead Xuθ , Kuθ , La,u
θ
,

respectively Au
θ
. The reason for studying the behavior of Xθ as θ → 0 is that θ 7→ J(uθ)

has a minimum in θ = 0 if u0 is an optimal control, hence we can derive necessary

optimality conditions by calculating its derivative in 0.

Let Xε,θ be the solution of the penalized equation

dXε,θ(t) + βε(X
ε,θ(t))dt =b(t, R(Xε,θ)(t), uθ(t))dt

+ σ(t, R(Xε,θ)(t), uθ(t))dW (t), t ∈ [0, T ];
(5.24)

with initial condition Xε,θ(t) = ξ(t) on [−δ, 0]. We set Kε,θ(t) :=
∫ t

0 βε(X
ε,θ(s))ds, t ∈

[0, T ]; Kε,θ(t) := 0, t ∈ [−δ, 0).

From the proof of (1, Theorem 2.1.) and relation (5.23), Xε,θ and Kε,θ converge as

ε↘ 0 in L2
F(Ω;C[0, T ]) to Xθ, respectively Kθ, uniformly with respect to θ.

We also consider, for ε > 0 and θ ∈ [0, 1], the solution Y ε,θ of the delay equation

dY ε,θ(t)+β′ε(X
ε,θ(t))Y ε,θ(t)dt =

[
〈∂ybε,θ(t), R(Y ε,θ)(t)〉+ 〈∂ubε,θ(t), u1(t)− u0(t)〉

]
dt

+
[
(∂yσ

ε,θ(t))R(Y ε,θ)(t) + (∂uσ
ε,θ(t))(u1(t)− u0(t))

]
dW (t), t ∈ [0, T ], (5.25)

with initial condition Y ε,θ(t) = 0, t ∈ [−δ, 0].
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5. STOCHASTIC OPTIMAL CONTROL

By formally differentiating with respect to θ in (5.24), we obtain an equation of the

form (5.25), suggesting that d
dθX

ε,θ(t) = Y ε,θ(t). This can be done rigorously:

lim
θ↘θ0

E sup
t∈[0,T ]

[∣∣∣∣∣Xε,θ(t)−Xε,θ0(t)

θ − θ0
− Y ε,θ0(t)

∣∣∣∣∣
2

+

∣∣∣∣∣Kε,θ(t)−Kε,θ0(t)

θ − θ0
−
∫ t

0
β′ε(X

ε,θ0(s))Y ε,θ0(s)ds

∣∣∣∣∣
2]

= 0;

(5.26)

for every θ0 ∈ [0, T ).

Our first task is to find an analogous derivative formula for Xθ and Kθ. For that,

we consider the following linear equation:

dY θ(t)+Y θ(t)dAθ(t) =
[
〈∂ybθ(t), R(Y θ)(t)〉+ 〈∂ubθ(t), u1(t)− u0(t)〉

]
dt

+
[
(∂yσ

θ(t))R(Y θ)(t) + (∂uσ
θ(t))(u1(t)− u0(t))

]
dW (t), t ∈ [0, T ],

(5.27)

with initial condition Y θ
0 = 0, t ∈ [−δ, 0].

Proposition 5.2.3. Equation (5.27) has a unique solution Y θ ∈ L2
F(Ω;C[−δ, T ]).

Since the convergence in formula (5.26) is not necessarily uniform in ε > 0, we

cannot derive a similar relation for Xθ, Kθ and Y θ directly from that. In this regard,

we will adapt an idea from (15) concerning the Malliavin derivatives for processes

without control and we will define the derivative of θ → Xθ in a Sobolev space.

Proposition 5.2.4. If u0 and u1 are càdlàg, the following derivation formula holds:

lim
θ→0

E
[ ∫ T

0

∣∣∣∣Xθ(t)−X0(t)

θ
− Y 0(t)

∣∣∣∣2 dt+

∣∣∣∣Xθ(T )−X0(T )

θ
− Y 0(T )

∣∣∣∣2 ] = 0. (5.28)

The remaining part of this section is dedicated to the proof of Proposition5.2.4.

For the moment we impose some restrictive assumptions:

(H16) ϕ is affine outside a compact interval;

(H17) there exists c > 0 such that |σ(t, y, u)| ≥ c, for every (t, y, u) ∈ [0, T ]× Rd × U .

First, we need a stability result for Au with respect to the control u:
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5.2 Necessary conditions of optimality

Proposition 5.2.5. Let (un)n≥0 be a sequence of controls such that

sup
t∈[0,T ]

∣∣un(t)− u0(t)
∣∣2 → 0 in L∞(Ω).

Suppose that conditions (H16)-(H17) hold and u0 is càdlàg. Then

E
∣∣Aun(t)−Au0(t)

∣∣4 → 0, ∀t ∈ [0, T ] .

Let H := L2
F(Ω × [−δ, T ], P ⊗ mT ), where the measure mT (dx) := dx + δT (dx).

We introduce the space W 1,2([0, 1] ;H) of absolutely continuous functions (hence a.e.

derivable) defined on [0, 1] and H-valued.

Lemma 5.2.1 ((5)). If the sequence (Xn)n≥1 ⊆ W 1,2([0, 1] ;H) is bounded and con-

verges in L2([0, 1] ;H) to some X ∈ L2([0, 1] ;H), then X ∈W 1,2([0, 1] ;H) and (∇Xn)

converges weakly to ∇X in L2([0, 1] ;H).

Relation (5.26) shows that Xε := (Xε,θ)θ∈[0,1] and Kε := (Kε,θ)θ∈[0,1] are elements

of W 1,2([0, 1] ;H); moreover, ∇θXε = Y ε,θ and

∇θKε =

∫ ·
0
β′ε(X

ε,θ(s))(∇θXε)(s)ds, θ ∈ [0, 1] . (5.29)

Also, Xε and Kε converge in L2([0, 1] ;H) to X := (Xθ)θ∈[0,1] and K := (Kθ)θ∈[0,1],

respectively. By Lemma 5.2.1, it follows that ∇Xε and ∇Kε converge weakly in

L2([0, 1] ;H) to ∇X, respectively ∇K.

By passing to the limit in equation (5.25) and using some a priori estimates, we

have the following preliminary result:

Lemma 5.2.2. We have mT (dt)dPdθ a.e.

(∇θX)(t) + (∇θK)(t) =

∫ t

0

[
〈∂ybθ(s), R(∇θX)(s)〉+

〈
∂ub

θ(s), u1(t)− u0(t)
〉]
ds

(5.30)

+

∫ t

0

[
(∂yσ

θ(s))R(∇θX)(s) + (∂uσ
θ(s))(u1(t)− u0(t))

]
dW (s).

Moreover, under conditions (H16)-(H17), ∇θX can be chosen to be càdlàg, ∇θK
with bounded variation and càdlàg, satisfying

esssup
θ∈[0,1]

E
[
‖∇θX‖40,T + ‖∇θK‖4BV [0,T ]

]
< +∞.
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5. STOCHASTIC OPTIMAL CONTROL

Lemma 5.2.3. Suppose that u0 and u1 are càdlàg. Under (H16)-(H17), the derivative

of the mapping θ 7−→ Kθ in W 1,2([0, 1] ;H) is given by:

(∇θK)(t) =

∫ t

0
(∇θX)(s)dAθ(s), mT (dt)dPdθ a.e. (5.31)

Relations (5.30) and (5.31), combined with the uniqueness of the solution of equa-

tion (5.27), give

(∇θX)(t) = Y θ(t), ∀t ∈ [0, T ] , dPdθ a.e. (5.32)

5.2.3 Maximum principle for near optimal controls

We introduce the space of solutions as S := L2
F(Ω;C[0, T ])× L2

F(Ω× [0, T ];Rd) and we

define the Hamiltonian of the system H : [0, T ]× Rd × U × R× Rd → R by

H(t, y, u, p, q) = g(t, y, u) + b(t, y, u)p+ 〈σ(t, y, u), q〉

For every control u, we consider the following anticipated BSDE on [0, T ]:


− dp(t) + p(t)dAu(t) = EFt [F (t, R(Xu)(t), u(t), p(t), q(t))]dt

− 〈q(t), dW (t)〉 ;

p(T ) = h′(Xu(T )),

(5.33)

where1

F (t, y, u, p, q) :=
∂H

∂x
(t, y(t), p(t), q(t))

+

∫ t+δ

t

∂H

∂y
(s, y(s), u(s), p(s), q(s))1[0,T ](s)λ(t− ds)

for (t, y, u, p, q) ∈ [0, T ]× C([0, T ] ;Rd)× L0([0, T ];U)× C [0, T ]× L0([0, T ];Rd).

Theorem 5.2.2. Equation (5.33) has a unique solution (p, q) ∈ S.

Every control u can be approximated, in L2(Ω× [0, T ]) by continuous controls uε.

Hence, if u∗ is an optimal control, since J : L2
G(Ω × [0, T ]) → R is continuous by

Proposition 5.2.1, we can find continuous controls ūn with ūn → u∗ in L2(Ω × [0, T ])

and J(ūn) ≤ J(u∗) + n−1.

1EGξ denotes the conditional expectation of a random variable ξ with respect to a subalgebra G of

F.
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In order to apply Ekeland’s variational principle, we take X := L2
G(Ω;C([0, T ] ;U)),

ε = n−1 and x = ūn. Therefore, for every n ∈ N∗, there exist un ∈ L2
G(Ω;C([0, T ] ;U))

such that

‖un − ūn‖L2(Ω;C([0,T ];U)) ≤ n
−1/2

and

J(un) ≤ Jn(u) := J(u) + n−1/2 ‖u− un‖L2(Ω;C([0,T ];U)) , ∀u ∈ L
2
G(Ω;C([0, T ] ;U)),

meaning that un is an optimal control corresponding to the perturbed cost func-

tional Jn.

We now formulate the maximum principle for the near optimal controls un. Let

Xn := Xun , An := Au
n

and (pn, qn) be the solution of equation (5.33) with parameter

un.

Proposition 5.2.6. For every admissible control v we have

E
∫ T

0

〈∂H
∂u

(t, R(Xn)(t), un(t), pn(t), qn(t)), v(t)−un(t)
〉
dt ≥ −

√
1

n
E sup
t∈[0,T ]

|v(t)− un(t)|2.

(5.34)

5.2.4 Maximum principle

We are able to retrieve the necessary conditions of optimality for u∗ by passing to the

limit in inequality (5.34). Let X∗ denote the state of the system corresponding to the

optimal control u∗.

Theorem 5.2.3 (maximum principle). If u∗ is an optimal control, then there exists a

càdlàg, bounded variation process (K(t))t∈[0,T ] such that〈
p∗(t)

∂b

∂u
(t, R(X∗)(t), u∗(t)) + q∗(t)

∂σ

∂u
(t, R(X∗)(t), u∗(t))

+
∂g

∂u
(t, R(X∗)(t), u∗(t)), v − u∗(t)

〉
≥ 0,

∀v ∈ U, dtdPa.e.,

where (p∗, q∗) ∈ L2
F(Ω× [0, T ])× L2

F(Ω× [0, T ];Rd) is a solution of the equation −dp
∗(t) = −dK(t) + EFt [F (t, R(X∗)(t), u∗(t), p∗(t), q∗(t))] dt− 〈q∗(t), dW (t)〉 ;

p∗(T ) = h′(X∗(T )).

(5.35)
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inputs, Les Grands Systèmes des Sciences et de la Technologie, in: RMA Res.

Notes Appl. Math.,Masson Paris 28 (1994), 77–94. 5

[4] J. M. Bismut, An introductory approach to duality in optimal stochastic control,

SIAM Rev 20 (1978), 62–78. 20
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